33 research outputs found

    Longest Common Extensions in Sublinear Space

    Get PDF
    The longest common extension problem (LCE problem) is to construct a data structure for an input string TT of length nn that supports LCE(i,j)(i,j) queries. Such a query returns the length of the longest common prefix of the suffixes starting at positions ii and jj in TT. This classic problem has a well-known solution that uses O(n)O(n) space and O(1)O(1) query time. In this paper we show that for any trade-off parameter 1τn1 \leq \tau \leq n, the problem can be solved in O(nτ)O(\frac{n}{\tau}) space and O(τ)O(\tau) query time. This significantly improves the previously best known time-space trade-offs, and almost matches the best known time-space product lower bound.Comment: An extended abstract of this paper has been accepted to CPM 201

    Palindromic Decompositions with Gaps and Errors

    Full text link
    Identifying palindromes in sequences has been an interesting line of research in combinatorics on words and also in computational biology, after the discovery of the relation of palindromes in the DNA sequence with the HIV virus. Efficient algorithms for the factorization of sequences into palindromes and maximal palindromes have been devised in recent years. We extend these studies by allowing gaps in decompositions and errors in palindromes, and also imposing a lower bound to the length of acceptable palindromes. We first present an algorithm for obtaining a palindromic decomposition of a string of length n with the minimal total gap length in time O(n log n * g) and space O(n g), where g is the number of allowed gaps in the decomposition. We then consider a decomposition of the string in maximal \delta-palindromes (i.e. palindromes with \delta errors under the edit or Hamming distance) and g allowed gaps. We present an algorithm to obtain such a decomposition with the minimal total gap length in time O(n (g + \delta)) and space O(n g).Comment: accepted to CSR 201

    Detecting One-variable Patterns

    Full text link
    Given a pattern p=s1x1s2x2sr1xr1srp = s_1x_1s_2x_2\cdots s_{r-1}x_{r-1}s_r such that x1,x2,,xr1{x,x}x_1,x_2,\ldots,x_{r-1}\in\{x,\overset{{}_{\leftarrow}}{x}\}, where xx is a variable and x\overset{{}_{\leftarrow}}{x} its reversal, and s1,s2,,srs_1,s_2,\ldots,s_r are strings that contain no variables, we describe an algorithm that constructs in O(rn)O(rn) time a compact representation of all PP instances of pp in an input string of length nn over a polynomially bounded integer alphabet, so that one can report those instances in O(P)O(P) time.Comment: 16 pages (+13 pages of Appendix), 4 figures, accepted to SPIRE 201

    Muon Physics: A Pillar of the Standard Model

    Full text link
    Since its discovery in the 1930s, the muon has played an important role in our quest to understand the sub-atomic theory of matter. The muon was the first second-generation standard-model particle to be discovered, and its decay has provided information on the (Vector -Axial Vector) structure of the weak interaction, the strength of the weak interaction, G_F, and the conservation of lepton number (flavor) in muon decay. The muon's anomalous magnetic moment has played an important role in restricting theories of physics beyond the standard standard model, where at present there is a 3.4 standard-deviation difference between the experiment and standard-model theory. Its capture on the atomic nucleus has provided valuable information on the modification of the weak current by the strong interaction which is complementary to that obtained from nuclear beta decay.Comment: 8 pages, 9 figures. Invited paper for the Journal of Physical Society in Japan (JPSJ), Special Topics Issue "Frontiers of Elementary Particle Physics, The Standard Model and beyond

    Methods of merger of two ordered subfiles of different length

    No full text

    Checking similarity of planar figures

    No full text
    corecore